Abstract

We report the first correction from prime editing a mutation in the RYR1 gene, paving the way to gene therapies for RYR1-related myopathies. The RYR1 gene codes for a calcium channel named Ryanodine receptor 1, which is expressed in skeletal muscle fibers. The failure of this channel causes muscle weakness in patients, which leads to motor disabilities. Currently, there are no effective treatments for these diseases, which are mainly caused by point mutations. Prime editing allows for the modification of precise nucleotides in the DNA. Our results showed a 59% correction rate of the T4709M mutation in the RYR1 gene in human myoblasts by RNA delivery of the prime editing components. It is to be noted that T4709M is recessive and, thus, persons having a heterozygous mutation are healthy. These results are the first demonstration that correcting mutations in the RYR1 gene is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call