Abstract

Several conventional forms of immunosuppression have been shown to antagonize the efficacy of anti-CD154 monoclonal antibody- (mAb) based costimulatory molecule blockade immunotherapy. Our objective was to determine if allograft recipients treated with a conventional immunosuppressive regimen could be sequentially converted to anti-CD154 mAb monotherapy without compromising graft survival. Outbred juvenile rhesus monkeys underwent renal allotransplantation from MHC-disparate donors. After a 60-day course of triple therapy immunosuppression with steroids, cyclosporine, and mycophenolate mofetil, monkeys were treated with: (1) cessation of all immunosuppression (control); (2) seven monthly doses of 20 mg/kg hu5C8 (maintenance), or; (3) 20 mg/kg hu5C8 on posttransplant days 60, 61, 64, 71, 79, and 88 followed by five monthly doses (induction+maintenance). Graft rejection was defined by elevation in serum creatinine>1.5 mg/dl combined with histologic evidence of rejection. Graft survival for the three groups were as follows: group 1 (control): 70, 75, >279 days; group 2 (maintenance): 83, 349, >293 days, and; group 3 (induction+maintenance): 355, >377, >314 days. Acute rejection developing in two of four monkeys after treatment with conventional immunosuppression was successfully reversed with intensive hu5C8 monotherapy. Renal allograft recipients can be successfully converted to CD154 blockade monotherapy after 60 days of conventional immunosuppression. An induction phase of anti-CD154 mAb appears to be necessary for optimal conversion. Therefore, although concurrent administration of conventional immunosuppressive agents including steroids and calcineurin inhibitors has been shown to inhibit the efficacy of CD154 blockade, sequential conversion from these agents to CD154 blockade appears to be effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.