Abstract

BackgroundNeuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2–4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations.ResultsThe voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance.ConclusionsThe SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants’ SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1218-z) contains supplementary material, which is available to authorized users.

Highlights

  • Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction

  • Magnetic resonance imaging (MRI), functional magnetic resonance imaging (FMRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) are the major approaches utilized in neuroimaging studies and indirectly measure neural activity

  • Similar results for LOO and 10-fold cross validation (10xCV) indicated that the classification model build using 1500 clustered voxels appeared robust to the exclusion of either one or 10 subjects. 29 of 30 clusters showed significant features having p-value less than or equal to 0.002

Read more

Summary

Introduction

Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction These advances have not explored extensively for diagnostic accuracy in human subjects. Medical imaging techniques have dramatically improved our ability to explore the neural processes relevant to psychiatric disorders These techniques can be group into two classes based on type of measurements: direct and indirect. A major limitation within these EEG and MEG are that they can only sense the electrical activity and magnetic fields oriented perpendicular to the surface of the brain and face the challenge of identifying the source of the underlying signal While they have superb temporal resolution, their spatial resolution is limited. Many studies have exploited these modalities in brain research and addiction [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call