Abstract

Abstract This paper reports a successful case study of applying machine learning to improve the history matching process, making it easier, less time-consuming, and more accurate, by determining whether Local Grid Refinement (LGR) with transmissibility multiplier is needed to history match gas-condensate wells producing from geologically complex reservoirs as well as determining the required LGR setup to history match those gas-condensate producers. History matching Hai Thach gas-condensate production wells is extremely challenging due to the combined effect of condensate banking, sub-seismic fault network, complex reservoir distribution and connectivity, uncertain HIIP, and lack of PVT data for most reservoirs. In fact, for some wells, many trial simulation runs were conducted before it became clear that LGR with transmissibility multiplier was required to obtain good history matching. In order to minimize this time-consuming trial-and-error process, machine learning was applied in this study to analyze production data using synthetic samples generated by a very large number of compositional sector models so that the need for LGR could be identified before the history matching process begins. Furthermore, machine learning application could also determine the required LGR setup. The method helped provide better models in a much shorter time, and greatly improved the efficiency and reliability of the dynamic modeling process. More than 500 synthetic samples were generated using compositional sector models and divided into separate training and test sets. Multiple classification algorithms such as logistic regression, Gaussian Naive Bayes, Bernoulli Naive Bayes, multinomial Naive Bayes, linear discriminant analysis, support vector machine, K-nearest neighbors, and Decision Tree as well as artificial neural networks were applied to predict whether LGR was used in the sector models. The best algorithm was found to be the Decision Tree classifier, with 100% accuracy on the training set and 99% accuracy on the test set. The LGR setup (size of LGR area and range of transmissibility multiplier) was also predicted best by the Decision Tree classifier with 91% accuracy on the training set and 88% accuracy on the test set. The machine learning model was validated using actual production data and the dynamic models of history-matched wells. Finally, using the machine learning prediction on wells with poor history matching results, their dynamic models were updated and significantly improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call