Abstract
Abstract The Stybarrow Field is a moderately sized biodegraded 22° API oil accumulation reservoired in Early Cretaceous sandstones of the Macedon Formation in the Exmouth Sub-Basin, offshore Western Australia. The reservoir is comprised of excellent quality, poorly consolidated turbidite sandstones up to 20m thick. The field lies in approximately 800m of water and has been developed with five near-horizontal producers and three water injection wells. The Stybarrow development came online at an initial rate of 80,000BOPD in November 2007. Due to the lack of significant aquifer support, water injection was planned from start-up for pressure maintenance. Acquisition of a variety of data types have enabled key subsurface challenges to be addressed both before and during production. Structural and stratigraphic complexities influence connectivity and therefore must be fully evaluated in order to achieve optimal sweep. A feasibility study concluded that Stybarrow would be a good candidate for 4D seismic monitoring. Two monitor surveys were acquired and, along with other reservoir surveillance techniques, have been used to refine the geological model. The first monitor survey at Stybarrow was recorded in November 2008. The results of this survey were in agreement with prior 4D modelling and supported the drilling of a successful development well in the north of the field. A second monitor survey was recorded in May 2011, three and a half years after first oil and at 70% of expected ultimate recovery. This survey is currently being analysed to determine if sweep patterns have changed. The 4D surveys have proven to be an important tool for understanding subsurface architecture and dynamic fluid-flow behaviour. The results of both 4D seismic surveys have provided significant contributions to understanding the dynamic behaviour within the reservoir to facilitate optimal reservoir management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.