Abstract

AbstractWe consider a spatial (line) model for invasion of a population by a single mutant with a stochastically selectively neutral fitness landscape, independent from the fitness landscape for nonmutants. This model is similar to those considered earlier. We show that the probability of mutant fixation in a population of size , starting from a single mutant, is greater than , which would be the case if there were no variation in fitness whatsoever. In the small variation regime, we recover precise asymptotics for the success probability of the mutant. This demonstrates that the introduction of randomness provides an advantage to minority mutations in this model, and shows that the advantage increases with the system size. We further demonstrate that the mutants have an advantage in this setting only because they are better at exploiting unusually favorable environments when they arise, and not because they are any better at exploiting pockets of favorability in an environment that is selectively neutral overall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.