Abstract

Abstract Identifying success factors in football is of sporting and economic interest. However, research in this field for national teams and their competitions is rare despite the popularity of teams and events. Therefore, we analyze data for the UEFA EURO 2020 and, for comparison purposes, the previous tournament in 2016. To mitigate the challenges of perceived multicollinearity and a small sample size, and to identify the relevant variables, we apply the ‘LASSO Cross-fitted Stability-Selection’ algorithm. This approach involves iterative splitting of data, with variables chosen via a ‘least absolute shrinkage and selection operator’ (LASSO) model (Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B 58: 267–288) on one half of the observations, while coefficients are estimated on the other half. Subsequently, we inspect the frequency of selection and stability of coefficient estimation for each variable over the repeated samples to identify factors as relevant. By that, we are able to differentiate generally valid success factors such as the market value ratio from on-field variables whose importance is tournament-dependent, e.g. the tackles attempted. As the latter is connected to a team’s tactics, we conclude that their observed relevance is correlated to the results of the linked playing style in the specific tournaments. We also show the changing effect of these playing-styles on success across tournaments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.