Abstract

We propose a new method for mode conversion and coupling between an optical fiber and a sub-micrometer waveguide using a subwavelength grating (SWG) with a period less than the 1st order Bragg period. The coupler principle is based on gradual modification of the waveguide mode effective index by the SWG effect that at the same time frustrates diffraction and minimizes reflection loss. We demonstrate the proposed principle by two-dimensional Finite Difference Time Domain (FDTD) calculations of various SWG structures designed for the silicon-on-insulator (SOI) platform with a Si core thickness of 0.3 microm. We found a coupling loss as small as 0.9 dB for a 50 microm-long SWG device and low excess loss due to fiber misalignment, namely 0.07 dB for a transverse misalignment of +/-1 microm, and 0.24 dB for an angular misalignment of +/-2 degrees. Scaling of the SWG coupler length down to 10 microm is also reported on an example of a 2D slab waveguide coupling structure including aspect ratio dependent etching and micro-loading effects. Finally, advantages of the proposed coupling principle for fabricating 3D coupling structures are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.