Abstract

A subwavelength SiO2-based optical waveguide with an air cladding and a multilayered buffer is presented. This multilayered buffer includes alternating low and high refractive index dielectric layers. The thicknesses of these dielectric layers are chosen optimally by using genetic algorithm so that the theoretical leakage loss of the present optical waveguide is minimized (<0.001 dB/mm at the central wavelength, e.g., 1550 nm). The modal analysis with a full-vectorial finite-difference method shows that the present SiO2 optical waveguide has the ability of sharp bending with a very small bending radius (~ 10 mum).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.