Abstract

We demonstrate the existence of a bound optical mode supported by an air slot in a thin metallic film deposited on a substrate, with slot dimensions much smaller than the wavelength. The modal size is almost completely dominated by the near field of the slot. Consequently, the size is very small compared with the wavelength, even when the dispersion relation of the mode approaches the light line of the surrounding media. In addition, the group velocity of this mode is close to the speed of light in the substrate, and its propagation length is tens of microns at the optical communication wavelength. We also investigate the performance of bends and power splitters in plasmonic slot waveguides. We show that, even though the waveguides are lossy, bends and splitters with no additional loss can be designed over a wavelength range that extends from DC to near-infrared, when the bend and splitter dimensions are much smaller than the propagation length of the optical mode. We account for this effect with an effective characteristic impedance model based upon the real dispersion relation of the plasmonic waveguide structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.