Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> We report on the emission characteristics of microcavity quantum-cascade lasers emitting in the terahertz frequency range based on circular-shaped microresonators. Strong mode confinement in the growth and in-plane directions are provided by a double-plasmon waveguide and due to the strong impedance mismatch between the gain material and air. This allows laser emission from devices with overall dimensions much smaller than the free-air emission wavelength <formula formulatype="inline"><tex>$(\lambda&gt;{\hbox {100}}\ \mu{\hbox {m}})$</tex> </formula>. Hence, for the smallest microdisks we achieved a threshold current as low as 13.5 mA (350 <formula formulatype="inline"><tex>${\hbox {A/cm}}^{2}$</tex> </formula>) in pulsed-mode operation at 5 K and stable single-mode emission up to 95 K in continuous-wave mode operation. We have observed dynamical frequency pulling of the resonator mode on the gigahertz scale, as a consequence of the gain shift due to the quantum-confined Stark effect. Thus, we were able to estimate the peak gain of the material to 27 <formula formulatype="inline"> <tex>${\hbox {cm}}^{-1}$</tex></formula>. The smallest microcavities exhibited a strong dependence on the exact placement of the bond wire which resulted in single- as well as double-mode emission. Finite-difference time-domain simulations were performed in order to identify the modes of the recorded spectra. They confirm that most of the observed spectral features can be attributed to the lasing emission of whispering-gallery modes. </para>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.