Abstract

This paper reports a subwavelength grating (SWG) based multiplexer (MUX) on a silicon photonics platform capable of multiplexing three transverse electric modes. The designed MUX is simulated using a commercial 3D finite-difference time-domain solver and shows broadband operation over the whole C and L optical telecom bands from 1530 nm to 1625 nm wavelength range. The effective indices of the Bloch modes in the SWG waveguides are extracted from the band structure plot. The designed MUX consists of two co-directional coupling regions for fundamental to higher-order mode coupling, with each coupling stage consisting of single-mode and multimode SWG waveguides. The transmission characteristics, viz. transmittance, insertion loss, and return loss, are presented and discussed. The coupling lengths without the tapering regions for TE0–TE1 and TE0–TE2 mode couplings are 14μm and 1.48μm, respectively. The transmittance is >78% with the highest insertion loss and return loss of 1.1 dB and –15 dB, respectively. At 1550 nm, the transmission is >88%, insertion loss is <0.6 dB, and return loss is <−15 dB. A uniform under-etch and over-etch of 5 nm are taken for the fabrication tolerance study, which shows a maximum variation of 0.58 dB for the insertion loss with return loss <−14.6 dB at 1550 nm. Over the whole simulated range, the insertion loss is <1.4 dB, and return loss is <−14.6 dB with ±10 nm change in device dimension. A temperature tolerance study with 50 °C and 100 °C rise in temperature has been done, and the device retains its broadband operation over the simulated range. The maximum increase in insertion loss is 0.1 dB for the TE0–TE2 coupling, while the overall return loss of the device decreases to <−20 dB for the TE0–TE1 coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.