Abstract
In this paper, we report on the design procedure for developing subwavelength graphene-based plasmonic waveguide, performing as a THz switch or an AND/OR logic gate. The propagation length of the surface plasmons (SPs), stimulated by a 6 THz TM polarized incident wave along this waveguide with a top graphene layer whose chemical potential is held at $\mu_{\rm C}=300~{\hbox{meV}}$ (ON state) is more than 35 times larger than that in the waveguide with $\mu_{\rm C}= 0~{\hbox{eV}}$ (OFF state). Numerical results, obtained from full wave simulations using a finite element method, also show that the modulation depth density obtained for the straight plasmonic switching waveguide, whose length is just about 20% of the incident wavelength, is larger than those reported to date. Moreover, we also designed a logic AND gate composed of a straight waveguide, a Y-branch switch, and a logic OR gate composed of two face to face Y-branches, whose total lengths are ${\sim} {\hbox{37\%}}$ , ${\sim} {\hbox{45\%}}$ , and ${\sim} {\hbox{53\%}}$ of the incident wavelength, respectively. Simulations show that the maximum ON/OFF ratios for these subwavelength plasmonic waveguides that occur between their ‘1 1’ and ‘0 0’ logical states are ${\sim} {\hbox{41.37}}$ , ${\sim} {\hbox{39.87}}$ , and ${\sim} {\hbox{40.76}}~{\hbox{dB}}$ , respectively. These numerical data also show that the modulation depth densities obtained for these devices are also greater than those reported to date. The proposed graphene-based plasmonic switches and gates offer potential building blocks for the future digital plasmonic circuits operating around 6 THz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Terahertz Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.