Abstract

Subwavelength focus can be created by one single binary multi-annular plate (MAP) through diffraction interference. Based on vectorial angular spectrum theory, a universal, efficient optimization method for designing subwavelength focusing MAPs is described using genetic algorithm and fast Hankel transform algorithm. The method can use arbitrarily polarized vector beams for illumination and can be applied to design multi-amplitude MAPs. It is shown by examples that the minimum feature size is not necessarily at subwavelength, and can be extended to several wavelengths. The longitudinally polarized electric component cannot be neglected in order to accurately reconstruct the real subwavelength focus. In the experiment, the best focal plane of MAP is precisely positioned through confocal scanning mechanism, in which a virtual confocal pinhole detection method is implemented. The wide-field, high-numerical aperture microscopic imaging system predominantly detects the transversely polarized electric components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.