Abstract
In the past decade, there has been tremendous progress in using subwavelength-scale nanostructures with elaborately designed periodic and disordered photonic materials for applications in integrated photonics. In this paper, we review the advances in subwavelength engineering used in silicon photonic devices, with an emphasis on our own contributions on the use of subwavelength gratings and hyperuniform disordered photonic structures to attain state-of-the-art performances for near- and mid-infrared applications in fiber–chip coupling, slot waveguides for refractive-index sensing, mode conversion, wavelength filtering, integrated resonators, and ultracompact high-extinction and broadband integrated polarizers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Quantum Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.