Abstract

Brillouin optomechanics has recently emerged as a promising tool to implement new functionalities in silicon photonics, including high-performance opto-RF processing and nonreciprocal light propagation. One key challenge in this field is to maximize the photon-phonon interaction and the phonon lifetime, simultaneously. Here, we propose a new, to the best of our knowledge, strategy that exploits subwavelength engineering of the photonic and phononic modes in silicon membrane waveguides to maximize the Brillouin gain. By properly designing the dimensions of the subwavelength periodic structuration, we tightly confine near-infrared photons and GHz phonons, minimizing leakage losses and maximizing the Brillouin coupling. Our theoretical analysis predicts a high mechanical quality factor of up to 700 and a remarkable Brillouin gain yielding 3500(W⋅m)-1 for minimum feature size of 50 nm, compatible with electron-beam lithography. We believe that the proposed waveguide with subwavelength nanostructure holds great potential for the engineering of Brillouin optomechanical interactions in silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.