Abstract

ABSTRACT: Complex hydrologic models, designed for simulating larger watersheds, require a huge amount of input data. Most of these models use spatially distributed data as inputs. Spatial data can be aggregated or disaggregated for use as input to a model, which can impact model outputs. Although, it is efficient to minimize data redundancy by aggregating the spatial data, upscaling reduces the detail/resolution of input information and increases model uncertainty. On the other hand, a large number of model inputs with high degrees of disaggregation take more computer time and space to process. Hence, a balance between striving for a maximum level of aggregation and a minimum level of information loss has to be achieved. This study presents a definition of an appropriate level of discretization, derived by establishing a relationship between a model's efficiency and the number of subwater‐sheds modeled. An entropy based statistical approach/tool called Subwatershed Spatial Analysis Tool (SUSAT) was developed to find an objective choice of an appropriate level of discretization. The new approach/tool was applied to three watersheds, each representing different hydrologic conditions, using a hydrologic model. Coefficients of efficiency and entropy estimated at different levels of discretization were used to validate the success of the new approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.