Abstract

The AMP-deaminases from chicken and rabbit muscle have been investigated by techniques which include sedimentation equilibrium, sodium dodecyl sulfate gel electrophoresis, amino acid analysis, NH2- and COOH-terminal analyses, and tryptic peptide mapping. The molecular weights of the native chicken (276,000) and rabbit (271,000) enzymes obtained by sedimentation equilibrium studies are in good agreement with values of 276,000 (chicken) and 275,000 (rabbit) calculated from amino acid analyses. The enzymes were reduced, carboxymethylated, and treated with either maleic or succinic anhydride in the presence of 6 M guanidine hydrochloride. Sodium dodecyl sulfate gel electrophoresis of the chemically modified enzymes resulted in a single electrophoretic species having an apparent molecular weight of 85,000. This observation is consistent with previous studies on the nonacylated enzymes and suggests that the muscle AMP-deaminases from chicken and rabbit do not contain noncovalent linkages which are readily disrupted by a large increase in negative charge. NH2-terminal analyses by the method of Stark and Amyth as well as the dansyl technique, indicate that the NH2-terminal positions of these enzymes are blocked. The enzymes are also resistant to digestion with carboxypeptidases A or B (or both) in the presence of sodium dodecyl sulfate. The most distinctive feature of the amino acid compositions of both the chicken and rabbit AMP-deaminases is the presende of eight half-cystine residues per 69,000 g of protein. Tryptic digests of the S-14C-carboxymethylated proteins were fractionated by ion exchange chromatography and high voltage electrophoresis. Six and five radioactiviely labeled peptides were detected in the electrophoretograms of the chicken and rabbit enzymes, respectively. This observation and the number of ninhydrinposition spots, together with the physical data on the molecular weights of the native enzymes and their subunits, suggest that the AMP-deaminases from chidken and rabbit muscle consist of four identical or very similar polypeptide chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call