Abstract

The present work demonstrates that bactridines (Bacts) possess different selectivities for neuronal and muscular voltage-dependent sodium (Na(V) ) channels, with subtle differences on channel isoforms. Bacts 2, 3, 4, 5 and 6 (100nm) reduced the peak current of several skeletal and neuronal channel isoforms selectively. Bacts 2 and 3 were more potent on Na(V) 1.4, Bacts 4 and 6 on Na(V) 1.3 and Bact 5 on Na(V) 1.7. Bactridines (except Bacts 1 and 5) caused a hyperpolarizing shift in the V(1/2) of activation and inactivation of Na(V) 1.3, Na(V) 1.4 and Na(V) 1.6. Voltage shifts of Boltzmann curves fitted to activation and inactivation occurred with a decrease in κ. Since the slope is proportional to κ=RT/zF, changes in κ probably express changes in z, the valence, in a voltage-dependent manner. Changes in z may express toxin-induced changes in the channel ionic environment, perhaps due to surface charges of the molecules. Bact 2 induced a Na(V) 1.2 voltage shift of the activation curves but no shift of the mutant Na(V) 1.2 IFM/QQQ; peak I(N) (a) was reduced in both channel forms, suggesting that channel blockage resulted from toxin binding to a site partially distinct from the α subunit binding site 4. Bactridines emerge as potential research tools to understand sodium channel isoform structure-function relationships and also as pharmacologically interesting peptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call