Abstract

The special extract ERr 731 from the roots of Rheum rhaponticum is the major constituent of Phytoestrol N which is used for the alleviation of menopausal symptoms. Recently, we demonstrated that ERr 731 and its aglycones trans-rhapontigenin and desoxyrhapontigenin as single test substances do not activate the estrogen receptors-alpha (ERalpha) in human endometrial adenoarcinoma cells. However, these substances together with the structurally related hydroxystilbenes cis-rhapontigenin, resveratrol and piceatannol activated the ERbeta-dependent reporter gene activity. To investigate if these substance are tissue selective ER activators, ERr 731 and the single test substances were examined in bone-derived U2OS cells stably expressing ERalpha or transiently expressing ERbeta. In the ERalpha expressing U2OS cells, a weak, but statistically significant ERalpha-coupled luciferase activity was detected with ERr 731 and desoxyrhapontigenin which was 10-times lower than with 10(8) M 17 beta-estradiol. In the ERbeta test system, all test substances significantly induced the luciferase activity in a magnitude comparable to 17beta-estradiol. All effects were abolished with the pure ER antagonist ICI 182 780, indicating an ER-specific effect. Intracellular actions were also examined with the glycosylated ERr 731 constituents rhaponticin and desoxyrhaponticin. Treatment of U2OS cells with defined mixtures of both glycosides resulted in a reporter gene activity comparable to that of ERr 731, thereby providing evidence for the existence of cellular uptake mechanisms for glycosylated hydroxystilbenes. This report confirms the strong ERbeta-dependent activity of ERr 731 and provides evidence for a tissue selective ER agonistic activity by ERr 731 and its aglycones, as demonstrated by the activation of ERalpha in bone cells but not in endometrial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.