Abstract

To probe the steric requirements for deacylation, we synthesized lysine-derived small molecule substrates and examined structure-reactivity relationships with various histone deacetylases. Rat liver, human HeLa, and human recombinant class I and II histone deacetylases (HDACs) as well as human recombinant NAD(+)-dependent SIRT1 (class III enzyme) were used in these studies. A benzyloxycarbonyl substituent on the alpha-amino group yielded the highest conversion rates. Replacing the epsilon-acetyl group with larger lipophilic acyl substituents led to a pronounced decrease in conversion by class I and II enzymes; the class III enzyme displayed a greater tolerance. Incubations with recombinant FLAG-tagged human HDACs 1, 3, and 6 showed a distinct subtype selectivity among small molecule substrates. The subtype selectivity of HDAC inhibitors could be predicted with these substrates and an easily obtainable mixture of HDAC subtypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.