Abstract

Subtraction-free computational complexity is the version of arithmetic circuit complexity that allows only three operations: addition, multiplication, and division. We use cluster transformations to design efficient subtraction-free algorithms for computing Schur functions and their skew, double, and supersymmetric analogues, thereby generalizing earlier results by P. Koev. We develop such algorithms for computing generating functions of spanning trees, both directed and undirected. A comparison to the lower bound due to M. Jerrum and M. Snir shows that in subtraction-free computations, division can be exponentially powerful. Finally, we give a simple example where the gap between ordinary and subtraction-free complexity is exponential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.