Abstract

BackgroundTFIIS stimulates RNA cleavage by RNA polymerase II and promotes the resolution of backtracking events. TFIIS acts in the chromatin context, but its contribution to the chromatin landscape has not yet been investigated. Co-transcriptional chromatin alterations include subtle changes in nucleosome positioning, like those expected to be elicited by TFIIS, which are elusive to detect. The most popular method to map nucleosomes involves intensive chromatin digestion by micrococcal nuclease (MNase). Maps based on these exhaustively digested samples miss any MNase-sensitive nucleosomes caused by transcription. In contrast, partial digestion approaches preserve such nucleosomes, but introduce noise due to MNase sequence preferences. A systematic way of correcting this bias for massively parallel sequencing experiments is still missing.ResultsTo investigate the contribution of TFIIS to the chromatin landscape, we developed a refined nucleosome-mapping method in Saccharomyces cerevisiae. Based on partial MNase digestion and a sequence-bias correction derived from naked DNA cleavage, the refined method efficiently mapped nucleosomes in promoter regions rich in MNase-sensitive structures. The naked DNA correction was also important for mapping gene body nucleosomes, particularly in those genes whose core promoters contain a canonical TATA element. With this improved method, we analyzed the global nucleosomal changes caused by lack of TFIIS. We detected a general increase in nucleosomal fuzziness and more restricted changes in nucleosome occupancy, which concentrated in some gene categories. The TATA-containing genes were preferentially associated with decreased occupancy in gene bodies, whereas the TATA-like genes did so with increased fuzziness. The detected chromatin alterations correlated with functional defects in nascent transcription, as revealed by genomic run-on experiments.ConclusionsThe combination of partial MNase digestion and naked DNA correction of the sequence bias is a precise nucleosomal mapping method that does not exclude MNase-sensitive nucleosomes. This method is useful for detecting subtle alterations in nucleosome positioning produced by lack of TFIIS. Their analysis revealed that TFIIS generally contributed to nucleosome positioning in both gene promoters and bodies. The independent effect of lack of TFIIS on nucleosome occupancy and fuzziness supports the existence of alternative chromatin dynamics during transcription elongation.

Highlights

  • TFIIS stimulates RNA cleavage by RNA polymerase II and promotes the resolution of backtrack‐ ing events

  • Improvement of nucleosome mapping by subtracting the sequence bias in gentle micrococcal nuclease (MNase) digestion Nucleosome-mapping procedures based on the isolation of DNA fragments from extensively MNase-digested chromatin miss information from MNase-sensitive nucleosomes

  • This choice is known to present two problems: (1) the analysis is limited to the mononucleosomal band, which can be depleted of some DNA segments; (2) the potential bias introduced by the DNA sequence preference of MNase

Read more

Summary

Introduction

TFIIS stimulates RNA cleavage by RNA polymerase II and promotes the resolution of backtrack‐ ing events. The most popular method to map nucleosomes involves intensive chromatin digestion by micrococcal nuclease (MNase). TFIIS is a transcription elongation factor required to solve backtracking, a situation in which RNA polymerase II slides back over the template DNA and the active site is separated from the 3′ end of the nascent transcript [8]. Backtracked polymerase cannot elongate until an RNA-cleavage reaction takes place, which generates a new 3′ end at the active site. This reaction is strongly enhanced by the interaction of TFIIS with the active RNA polymerase II site [9]. Given the bidirectional relationship between transcription and nucleosome positioning, RNA polymerase II backtracking and its resolution by TFIIS could influence nucleosome positioning across the genome. As far as we know, no evidence for this has been found to date

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call