Abstract
Environmental change may lead to new memories or modify old ones, but the underlying neural mechanisms are largely unclear. We recorded hippocampal place cells simultaneously from CA1 and CA3 in a virtual reality environment. Compared with CA1, place cells in CA3 are more tolerant of individual landmark changes but undergo orthogonal changes to code distinctively different environments. As visual noise (virtual fog) is introduced to a visually enriched environment, place cells in CA1 split into two subpopulations: in one, place cells maintain their field locations while changing their firing rates to reflect sensory changes; in the other, place cells exhibit global remapping in response to the contextual change. In contrast, place cells in CA3 exhibit mainly rate remapping under the same conditions. Our results suggest that CA1 may simultaneously represent heterogeneous maps of the same environment when subtle visual noise induces both sensory and contextual changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.