Abstract
The evolution of super-resolution imaging techniques is benefited from the ongoing competition for optimal rhodamine fluorophores. Yet, it seems blind to construct the desired rhodamine molecule matching the imaging need without the knowledge on imaging impact of even the minimum structural translation. Herein, we have designed a pair of self-blinking sulforhodamines (STMR and SRhB) with the bare distinction of methyl or ethyl substituents and engineered them with Halo protein ligands. Although the two possess similar spectral properties (λab, λfl, ϕ, etc.), they demonstrated unique single-molecule characteristics preferring to individual imaging applications. Experimentally, STMR with high emissive rates was qualified for imaging structures with rapid dynamics (endoplasmic reticulum, and mitochondria), and SRhB with prolonged on-times and photostability was suited for relatively "static" nuclei and microtubules. Using this new knowledge, the mitochondrial morphology during apoptosis and ferroptosis was first super-resolved by STMR. Our study highlights the significance of even the smallest structural modification to the modulation of super-resolution imaging performance and would provide insights for future fluorophore design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.