Abstract

Using event-related potentials (ERPs) of the electroencephalogram, we investigated how cognitive control is altered by the scope of an attentional template currently activated in visual working memory. Participants performed a spatial cuing task where an irrelevant color singleton cue was presented prior to a target array. Blockwise, the target was either a red circle or a gray square and had to be searched within homogenous (gray circles) or heterogeneous non-targets (differently colored circles or various shapes). Thereby we aimed to trigger the adoption of different attentional templates: a broader singleton or a narrower, more specific feature template. ERP markers of attentional selection and inhibitory control showed that the amount of cognitive control was overall enhanced when participants searched on the basis of a feature-specific template: the analysis revealed reduced selection (N2pc, frontal P2) and pronounced inhibition (negative shift of frontal N2) of the irrelevant color cue when participants searched for a feature target. On behavioral level attentional capture was most pronounced in the color condition with no differentiation between the task-induced scopes of the attentional template.

Highlights

  • Imagine you are walking down a busy city street—information flows in from all sides

  • Posterior Sites N2 posterior contralateral component (N2pc) N2pc appeared as a contralateral negativity that started approximately 180 ms after cue array onset and was more pronounced in the color than in the shape condition, F(1,23) = 9.35, ηp2 = 0.29, p < 0.01

  • This top-down bias is of central importance for our behavior as it highlights currently relevant information and thereby promotes its selection (Bundesen, 1990; Duncan and Humphreys, 1992; Desimone and Duncan, 1995; Chelazzi et al, 1998)

Read more

Summary

Introduction

Imagine you are walking down a busy city street—information flows in from all sides. This overwhelming quantity of sensory input is a great deal too much for our attentional system to handle simultaneously. Attention acts as a filter by keeping out irrelevant information, thereby enabling the selection of those environmental inputs that foster goal-directed behavior (Broadbent, 1958; Treisman, 1969). It is assumed that whenever we search for specific information in our visual surrounding, attention is guided by so-called attentional templates (Duncan and Humphreys, 1989) or top-down control sets (Folk et al, 1992): these mental representations are activated in visual working memory and influence processing by biasing neural competition in favor of the currently relevant objects (Bundesen, 1990; Duncan and Humphreys, 1992; Desimone and Duncan, 1995; Chelazzi et al, 1998). Attentional templates can be either set to support the selection

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call