Abstract

Some marine bacteria synthesize docosahexaenoic acid (DHA; C22) and eicosapentaenoic acid (EPA; C20) by enzyme complexes composed of four subunits (A-D). We recently revealed that β-ketoacyl synthase (KSC)/chain length factor (CLF)-like domains in the "C" subunit of DHA synthase catalyzed the last elongation step (C20 to C22) even though their amino acid sequences are very similar to those of EPA synthase. To investigate the amino acid residues controlling the product chain length, conserved residues in the KSC/CLF-like domains in DHA synthase were replaced with corresponding EPA synthase residues. Among 12 mutants, two CLF-like domain-mutated genes completely lost DHA productivity and produced trace amounts of EPA when coexpressed with dha-ABD in Escherichia coli, whereas when coexpressed with epa-ABD, they produced the same amounts of EPA as epa-ABCD. These results suggest that the product profiles were subtly controlled by several amino acid residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.