Abstract

As an important channel connecting the East and South China Seas, circulations in the Taiwan Strait are strongly influenced by the East Asian monsoon and the topography of the strait, especially the Taiwan Bank (TWB), which is a remarkable topographic feature located at the southern entrance to the strait. Based on a series of pressure gauges deployed roughly 40 km offshore along the western Strait, subtidal sea-level variability under the combined impact of winter monsoon and topography was studied. The analyses show significant along-strait coherences of subtidal sea levels and their coherences with the large-scale monsoon wind for periods from 2 to 14 days. It is suggested that these fluctuations are mainly forced waves driven by the large-scale winds. In addition to the normal cross-shore wind setup, a sea-level setup in the along-strait direction is confirmed, which is induced by the combined forcing of the fluctuating winter monsoon and the blocking of the TWB. A southward current surge driven by a northerly wind event will cause a rising sea level over the TWB inducing a southward along-shore slope anomaly to the north of the TWB and a reversed slope anomaly to the south. The subtidal current through the channel to the west of the TWB is found to be influenced by the reversed slope anomalies generated via the along-shore setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call