Abstract

Recent observations using moored current meters, shipboard ADCP transects, salinity mapping and drifters have been used to study the residual circulation including wind drift in western Florida Bay.Rapid, nearly synoptic surveys of salinity over a large area was an effective tracer-mapping technique, when salinity gradients were sufficiently strong, and provided qualitative information on Lagrangian water motion for the entire study area. The salinity maps indicated a general south-eastward advection, which was only subordinate to tidal mixing in a narrow zone adjacent to the Florida Keys.Drifter data collected simultaneously, allowed quantitative estimates to be added to the transport pattern suggested by salinity maps. The selectively deployed drifters yielded estimates of total drift velocities. In addition, moored current meters and shipboard current profiling were used to determine the distribution of flow across the mouth of the bay facing the Gulf of Mexico and the transport through Long Key Channel, a major connection between the bay and the Atlantic Ocean.Analysis showed that from 64 to over 92% of the drifter trajectory variances could be explained by the combination of a local wind drift, expressed in terms of a wind drift factor multiplied by the surface shear velocity, and an ambient current. For a 1m high drifter deployed at the surface of the water column, the wind drift factor was found to be approximately 0·125m, making the drift speed roughly equal to 0·45% of wind speed. The mean drifter speeds were linearly proportional to mean transport estimates derived from the current meter observations in Long Key Channel, enhancing confidence in both data sets.The total south-eastward directed residual current varied between 100 and 5000m day−1and was weaker in summer than in winter, when southward winds associated with periodic passage of cold fronts boost the residual flow. The estimated contribution from local wind drift varied between 500m day−1in summer to 1000m day−1in winter. The remaining contribution to the observed Lagrangian residual circulation in western Florida Bay is caused by other forcing, including tidal rectification, remote wind forcing and large-scale current systems (the Gulf Stream and Florida Current systems).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call