Abstract

The high energy lead impedance is valuable for detecting lead failure in ICDs, but until recently shock delivery was necessary for high energy impedance measurement. This study compared the use of subthreshold test pulses and low energy test shocks to estimate the high energy impedance. Immediately after implantation of Ventak Prizm ICDs in 29 patients, the lead impedance was measured with five subthreshold (0.4 microJ) test pulses, 5 low energy (1.1 J) shocks, and two to three high energy (16 +/- 4.5 J) shocks. The mean impedances measured using high energy shocks, low energy shocks, and subthreshold pulses were 42.0 +/- 7.3 omega, 46.5 +/- 8.1 omega, and 42.4 +/- 7.1 omega, respectively. The impedances measured using high and low energy shocks differed significantly (P < 0.0001), while those obtained by high energy shocks and low energy pulses did not (P = 0.63). According to the Pearson correlation coefficient, the impedance measurements with subthreshold pulses and low energy shocks were both closely correlated (P < 0.0001) with impedance values determined with high energy shocks. However, while the impedance values tended to be higher when measured with low energy shocks, the concordance correlation coefficient (c) was higher for subthreshold test pulse versus high energy shock (c = 0.92) than for low versus high energy shock (c = 0.73). Furthermore, the intraindividual variability of impedance measurements was lower with subthreshold pulse measurements than with low energy shocks. Compared with low energy shocks, impedance measurement with subthreshold pulses has higher reproducibility and a higher correlation with the impedance obtained by high energy shock delivery. Safe and painless high energy impedance estimation with subthreshold pulses might, therefore, help to detect ICD lead failure during routine follow-up.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call