Abstract

Energy autonomy is one of the major challenges of embedded Artificial Intelligence. Among the candidate technologies likely to take up such a challenge, spiking neural networks are the most promising because of both their spatio-temporal and sparse representation of the information. In this context, this paper presents a neuromorphic approach based on an industrial CMOS technology and adopting an entirely subthreshold mode of operation (supply voltage VDD lower than the MOSFET threshold voltage). The detailed topologies of fabricated artificial neurons and synapses are presented as well as experimental results, validating an energy consumption of the order of a few femto-Joules per spike. Also, an arrangement of neurons and synapses is proposed to qualify experimentally this subthreshold approach in the perspective of highly energy efficient spiking neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.