Abstract

Subthalamic nucleus (STN) neurons have a pivotal role in basal ganglia, as a result of their intrinsic membrane properties, connections within the circuit and glutamatergic nature. Their innate pacemaker activity, consisting of a single-spike tonic mode of discharge, is abolished in the case of hemiballism, profoundly disrupted in the Parkinsonian state and replaced by a regular bursting mode under treatment (high-frequency stimulation, HFS). We propose that control STN activity represents a clock, an internal measure of time allowing the correct automatic execution of learned movements and, in particular, the automatic switch from one movement to the next in a sequential motor pattern. STN neuronal activity would be able to reset the frequency of oscillations of motor thalamo–cortical loops, notably in the γ band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.