Abstract
Unmanned Aerial Vehicle (UAV) maneuver strategy learning remains a challenge when using Reinforcement Learning (RL) in this sparse reward task. In this paper, we propose Subtask-Masked curriculum learning for RL (SubMas-RL), an efficient RL paradigm that implements curriculum learning and knowledge transfer for UAV maneuver scenarios involving multiple missiles. First, this study introduces a novel concept known as subtask mask to create source tasks from a target task by masking partial subtasks. Then, a subtask-masked curriculum generation method is proposed to generate a sequenced curriculum by alternately conducting task generation and task sequencing. To establish efficient knowledge transfer and avoid negative transfer, this paper employs two transfer techniques, policy distillation and policy reuse, along with an explicit transfer condition that masks irrelevant knowledge. Experimental results demonstrate that our method achieves a 94.8% success rate in the UAV maneuver scenario, where the direct use of reinforcement learning always fails. The proposed RL framework SubMas-RL is expected to learn an effective policy in complex tasks with sparse rewards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.