Abstract

Up-to-date results on the effects of neutron irradiation on the impact properties and fracture behavior of V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented in this paper, with an emphasis on the behavior of the U.S. reference alloys V-4Cr-4Ti containing 500-1000 wppm Si. Database on impact energy and cluctile-brittle transition temperature (DBTT) has been established from Charpy impact tests of one-third-size specimens irradiated at 420{degrees}C-600{degrees}C up to {approx}50 dpa in lithium environment in fast fission reactors. To supplement the Charpy impact tests fracture behavior was also characterized by quantitative SEM fractography on miniature tensile and disk specimens that were irradiated to similar conditions and fractured at -196{degrees}C to 200{degrees}C by multiple bending. For similar irradiation conditions irradiation-induced increase in DBTT was influenced most significantly by Cr content, indicating that irradiation-induced clustering of Cr atoms takes place in high-Cr (Cr {ge} 7 wt.%) alloys. When combined contents of Cr and Ti were {le}10 wt.%, effects of neutron irradiation on impact properties and fracture behavior were negligible. For example, from the Charpy-impact and multiple-bend tests there was no indication of irradiation-induced embrittlement for V-5Ti, V-3Ti-1Si and the U.S. reference alloy V-4Cr-4Ti after irradiation to {approx}34 dpa at 420{degrees}C to 600{degrees}C, and onlymore » ductile fracture was observed for temperatures as low as -196{degrees}C. 14 refs., 8 figs., 1 tab.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.