Abstract
Measurement of a degenerate (or non-degenerate) discrete observable is investigated in the framework of quantum measurement theory short of collapse, i.e. premeasurement theory, based on a unitary evolution operator that includes the measurement interaction between object and measuring instrument. A pointer observable with eigen-projectors of, in general, many (or even infinitely) dimensional ranges is introduced as a new approach. It leads to redundant entanglement in the final state. As the first main result, the basic dynamical relation of the approach is derived. It is shown to be equivalent to the calibration condition, which is known to define general exact measurement. The latter is given a practical form. Complete measurement (premeasurement with objectification or collapse), which is in some sense implied by the premeasurement theory, performed on a subsystem of a bipartite object in a pure state is studied with particular attention to its effect on the opposite, interactionally unaffected subsystem. The change of state of the latter is derived for exact complete subsystem measurement, and it is shown that the change is the same as for the simplest, i.e. ideal measurement (this is the second main result). It is applied to the case of twin observables and thus distant measurement obtains a new, more satisfactory, foundation (the third main result). Distant measurement is a basic concept in the EPR phenomenon. The well-known importance of the latter implies importance of the former.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.