Abstract

We investigate a weak version of subsystem eigenstate thermalization hypothesis (ETH) for a two-dimensional large central charge conformal field theory by comparing the local equivalence of high energy state and thermal state of canonical ensemble. We evaluate the single-interval Rényi entropy and entanglement entropy for a heavy primary state in short interval expansion. We verify the results of Rényi entropy by two different replica methods. We find nontrivial results at the eighth order of short interval expansion, which include an infinite number of higher order terms in the large central charge expansion. We then evaluate the relative entropy of the reduced density matrices to measure the difference between the heavy primary state and thermal state of canonical ensemble, and find that the aforementioned nontrivial eighth order results make the relative entropy unsuppressed in the large central charge limit. By using Pinsker’s and Fannes-Audenaert inequalities, we can exploit the results of relative entropy to yield the lower and upper bounds on trace distance of the excited-state and thermal-state reduced density matrices. Our results are consistent with subsystem weak ETH, which requires the above trace distance is of power-law suppression by the large central charge. However, we are unable to pin down the exponent of power-law suppression. As a byproduct we also calculate the relative entropy to measure the difference between the reduced density matrices of two different heavy primary states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.