Abstract

We study time evolution of a subsystem's density matrix under unitary evolution, generated by a sufficiently complex, say quantum chaotic, Hamiltonian, modeled by a random matrix. We exactly calculate all coherences, purity and fluctuations. We show numerically that the reduced density matrix can be described in terms of a noncentral correlated Wishart ensemble for which we are able to perform analytical calculations of the eigenvalue density. Our description accounts for a transition from an arbitrary initial state toward a random state at large times, enabling us to determine the convergence time after which random states are reached. We identify and describe a number of other interesting features, such as a series of collisions between the largest eigenvalue and the bulk, accompanied by a phase transition in its distribution function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.