Abstract

Subsystem Density-Functional Theory and its extension to excited states, namely, subsystem Time-Dependent Density-Functional Theory, have been proven to be efficient and accurate fragmentation approaches for ground and excited states. In the present study we extend this approach to the subsystem-based description of total systems by means of GW and the Bethe-Salpeter equation (BSE). For this, we derive the working equations starting from a subsystem-based partitioning of the screened-Coulomb interaction for an arbitrary number of subsystems. Making use of certain approximations, we develop a parameter-free approach in which environmental screening contributions are effectively included for each subsystem. We demonstrate the applicability of these approximations by comparing quasi-particle energies and excitation energies from subsystem-based GW/BSE calculations to the supermolecular reference. Furthermore, we demonstrate the computational efficiency and the usefulness of this method for the description of photoinduced processes in complex chemical environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.