Abstract
<div> <p><span>Tropical instability waves (TIWs) near the ocean surface are present in all tropical oceans and are known to be important for air-sea interactions and regional climate variability. Recent studies based on observations in the Pacific Ocean found that apart from TIWs at the surface, there also exist subsurface TIWs (subTIWs) which can alter vertical mixing. To date, most studies have focused on TIW related dynamics near the ocean surface. However, to properly assess vertical mixing in the upper ocean, improved understanding of the vertical structure of TIWs and the influence of subTIWs is needed. In this study, </span>we show subTIW<span> presence</span> in the Atlantic Ocean for the first time using mooring observations.<span>Further, we characterize subTIWs in the tropical Atlantic Ocean with a special focus on subTIW spatial and temporal variability and their effect on mixing. For this, data covering almost two decades are used that were generated from a comprehensive, global, high-resolution ocean model forced by the reanalysis ERA5. We find subTIWs between 40 m depth and the thermocline in both model and observations and unlike TIWs, subTIWs are frequently active both north and south of the Equator. The results of our study suggest that subTIWs induce a multi-layer shear structure which has the potential to destabilize the mean flow and thereby cause mixing. These effects are strongest north of the Equator where TIWs and subTIWs act simultaneously, implying possible TIW/subTIW interactions. </span>We conclude that subTIWs are a feature of the tropical Atlantic Ocean with regionally varying implications for vertical mixing and heat fluxes. <span>In addition, subTIWs differ from TIWs in their temporal and regional occurrences Therefore, subTIWs should be considered in </span>f<span>u</span>ture assessments of upper ocean dynamics, particularly in subTIW dominated regions.</p> </div>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.