Abstract

The laser-induced surface damage threshold of fused silica is discussed with respect to the near but below the surface zone of microcracks, strain, and dislocations. This subsurface zone was varied in thickness throughout a set of matched samples by means of interrupted controlled grinding followed by optical polishing. Laser damage testing was performed using a TEM <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">00</inf> beam having a wavelength of 1.06 μm, a pulsewidth of 40.5 ns, and a spot size of 147 μm. The experimentally measured breakdown electric fields were corrected using the technique of roughness normalization and plotted versus the thickness of the subsurface zone. Analysis of the data leads to the conclusion that laser-induced surface damage is dominated by the superficial polish layer and that the effect of the disturbed subsurface zone is essentially negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.