Abstract
The time-averaged shear ( S) wave velocity in the upper 30 meters of sediment ( V S30) is a widely used site parameter for ground motion prediction. When unavailable from measurements, as is often the case at accelerograph stations in Central and Eastern North America (CENA), V S30 is typically estimated from proxies. We propose an alternative for CENA based on a theoretical relationship between S-wave velocity and the ratio of radial to vertical components of the compressional ( P)-wave–dominated portion of the velocity time series. This method is applied to 31 CENA accelerograph sites having measured S-wave velocity profiles. Time-averaged S-wave velocities to depth z ( V SZ) from the proposed method agree well with those from measurements. We develop linear relationships between V SZ and V S30 using CENA S-wave velocity profile data. Values of V S30 established from the proposed method (including depth extrapolation) have lower dispersion relative to data ( σln V = 0.43) than do estimates from available CENA proxies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.