Abstract
A saturated bilayer of hydrogen isotopes has been formed in graphite by implanting protons and deuterons at different energies. Residual gas analysis during thermal desorption strongly suggests that hydrogen atoms recombine locally in the bulk of the damaged material and diffuse to the surface in molecular form. This model of local recombination and molecular diffusion is consistent with the predictions of the local saturation model. It also explains recent data of the low-energy chemical erosion during hydrogen bombardment at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.