Abstract

We use cross-sectional transmission electron microscopy to study the damage induced below the surface of indium phosphide (InP) samples by single and multiple femtosecond laser pulses with a photon energy lower than the InP band gap. Single-pulse irradiation creates a ∼100 nm deep crater with a resolidified surface layer consisting of quasiamorphous indium phosphide. The resolidified layer has a thickness of ∼60 nm at the center and extends laterally beyond the edge of the crater rim. Exposure to multiple femtosecond pulses of 2050 nm center wavelength results in the formation of laser-induced periodic surface structures (LIPSS) with two different periods, one (∼1730 nm) less than but close to the laser wavelength and one (∼470 nm) four times smaller. Segregation beneath both types of ripples leads to the formation of In-rich particles embedded in the resolidified surface layer. Extended defects are detected only below the center of the multiple-pulse crater and their distribution appears to be correlated with the LIPSS modulation. Finally, LIPSS formation is discussed in terms of the observed subsurface microstructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call