Abstract

Geophysical tools such as electrical resistivity tomography (ERT) and shallow seismic (both P-wave seismic refraction and Multi-channel Analysis of Surface Waves (MASW)) are interesting techniques for delineating the subsurface configurations as stratigraphy, structural elements, caves and water saturated zones. The ERT technique is used to delineate the contamination, to detect the buried objects, and to quantify some aquifer properties. Eight 2-D (two dimensional) electrical resistivity sections were measured using two different configurations (dipole–dipole and Wenner). The spread length is of 96m and the electrodes spacing are 2, 4 and 6m, respectively to reach a depth ranging from 13 to 17m. The results indicate that, the subsurface section is divided into main three geo-electrical units, the first is fractured marl and limestone which exhibits high resistivity values ranging from 40 to 300ohmm. The second unit is corresponding to marl of moderate resistivity values and the third unit, which is the deeper unit, exhibits very low resistivity values corresponding to clayey marl. The fourth layer is marly clay with water. The presence of clay causes the most geotechnical problems. Fourteen shallow seismic sections (both for P-wave and MASW) were carried out using spread of 94m and geophone spacing of 2m for each P-wave section. The results demonstrate that the deduced subsurface section consists of four layers, the first layer exhibits very low P-wave velocity ranging from 280 to 420m/s, the second layer reveals P-wave velocity ranging from 400 to 1200m/s, the third layer has P-wave velocity ranging from 970 to 2000m/s and the fourth layer exhibits high velocity ranging from 1900 to 3600m/s. The ERT and shallow seismic results, reflect the presence of two parallel faults passing through Quarter 27 and trending NW-SE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call