Abstract

A high-resolution ground and marine magnetic survey was executed to determine the structure of the subsurface and the thickness of the sedimentary cover in the Mygdonian Basin. A spacing of approximately 250 m or 500 m between measurement stations was selected to cover an area of 15 km × 22 km. Edge detectors such as total horizontal derivative (THDR), analytic signal (AS), tilt derivative (TDR), enhanced total horizontal gradient of tilt derivative (ETHDR) were applied to map the subsurface structure. Depth was estimated by power spectrum analysis, tilt derivative, source parameter imaging (SPI), and 2D-forward modeling techniques. Spectral analysis and SPI suggest a depth to the basement ranging from near surface to 600 m. For some selected locations, depth was also calculated using the TDR technique suggesting depths from 160 to 400 m. 2D forward magnetic modeling using existing boreholes as constraints was carried out along four selected profiles and confirmed the presence of alternative horsts and grabens formed by parallel normal faults. The dominant structural trends inferred from THDR, AS, TDR, and ETHDR are N–S, NW–SE, NE–SW and E–W. This corresponds with the known structural trends in the area. Finally, a detailed structural map showing the magnetic blocks and the structural architecture of the Mygdonian Basin was drawn up by collating all of the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call