Abstract

Quantitative interpretation of the magnetic data particularly in a complex dissected structure necessitates using of filtering techniques. In Taba protectorate, Sinai synthesis of different filtering algorithms was carried out to distinct and verifies the subsurface structure and estimates the depth of the causative magnetic sources. In order to separate the shallow-seated structure, filters of the vertical derivatives (VDR), Butterworth high-pass (BWHP), analytic signal (AS) amplitude, and total horizontal derivative of the tilt derivative (TDR_THDR) were conducted. While, filters of the apparent susceptibility and Butterworth low-pass (BWLP) were conducted to identify the deep-seated structure. The depths of the geological contacts and faults were calculated by the 3D Euler deconvolution.Noteworthy, TDR_THDR was independent of geomagnetic inclination, significantly less susceptible to noise, and more sensitive to the details of the shallow superimposed structures. Whereas, the BWLP proved high resolution capabilities in attenuating the shorter wavelength of the near surface anomalies and emphasizing the longer wavelength derived from deeper causative structure. 3D Euler deconvolution (SI=0) was quite amenable to estimate the depths of superimposed subsurface structure. The pattern, location, and trend of the deduced shallow and deep faults were conformed remarkably to the addressed fault system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call