Abstract

The Society of Automotive Engineers Fatigue Design and Evaluation (SAEFDE) Committee has been conducting a long-term program aimed at the development of a predictive capability for fatigue life of SAE 1045 induction-hardened shafts. As a part of a larger-scale investigation provided by the SAEFDE committee, this research provided an analytical model capable of predicting the total fatigue life, both crack initiation and crack propagation, of an induction-hardened shaft under applied bending stress. The analysis procedure incorporated the effects of residual stresses. Total stress intensity factors were calculated and superimposed using applied bending stress intensity factors and residual stress intensity factors along the subsurface elliptical crack front. Fatigue tests were conducted using SAE 1045 induction-hardened shafts to verify the analytical models of subsurface fatigue crack growth. The total fatigue life calculations of subsurface failure showed a factor from 0.6 to 0.8 compared with the experimental results. The analytical model and experimental data confirmed that the majority of the total fatigue life is spent in the crack propagation phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.