Abstract

The primary cause for early failure of ceramic restorations is surface and subsurface damage induced in adjustment and resurfacing using dental handpieces/burs. This paper reports finite element analysis (FEA) modelling of dental resurfacing to predict the degrees of subsurface damage, in combination with experimental measurement using scanning electron microscopy (SEM). The FEA predictions of subsurface damage induced in a feldspar porcelain with coarse diamond burs were in agreement with the SEM experimental measurement. These findings provide dental clinicians a quantitative description of the response of dental resurfacing-induced subsurface damage. The implication of the results for non-destructive evaluation of subsurface damage by FEA modelling will be practically meaningful to clinical dental restorations for high-quality ceramic restorations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.