Abstract
A rolling contact fatigue failure is one of the main fatigue damages in railway wheels due to cyclic rolling contact with rails. This fatigue failure caused by internal defects such as nonmetallic inclusions or voids might occur in heavy haul freight car wheels. Subsurface crack propagation behaviors from the internal defects are evaluated by twin disc type rolling contact fatigue tests using test specimens with artificial defects and by finite element analyses simulating the rolling contact fatigue tests. The subsurface cracks are more likely to propagate in the test specimens with larger artificial defects. In addition, the cracks initiating from the trailing side of defects propagate faster than those from the leading side. Shear mode equivalent stress intensity factors obtained from the finite element analyses correspond well to the results of rolling contact fatigue tests. The test specimen models with larger defect have larger equivalent stress intensity factor ranges than the test specimen model with smaller defect in both leading and trailing side. The results of finite element analyses also suggest that the crack propagations are affected by the deformation of artificial defects and this leads to have higher resistance to crack propagation in the test specimens with smaller internal defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Society of Materials Science, Japan
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.