Abstract
Model updating techniques are used to update the finite element model of a structure, so that updated model can be predicted the dynamic behavior of an actual assembly structure more accurately. Most of the model updating techniques neglects damping and so amplitudes of vibration at resonance and antiresonance frequencies cannot be predicted by using of these updated models. In dynamic design of structures predicting of these properties is necessary. This paper presents a new technique to create an accurate finite element (FE) updated model of complex assembly structures consisting of substructures and real joint by considering damping of them. Given the fact that modal testing of real joints (such as bolt with some washers) are almost impossible. The updated model of assembly structure is obtained in four steps. In the first step, mass and stiffness matrix of substructures, joint and assembly structure are updated using modal data and Eigen-sensitivity approach. In the second step, damping of assembly structure is identified using complex modal data and updated mass and stiffness matrices which are obtained in first step. In the third step, the effect of damping of joint on frequency response functions (FRFs) extracted from updated model was shown. In the forth step, damping matrix of joint is updated by using FRF-based model updating method and finally damped updated model of assembly structure compared with measured data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.